estimated standard deviations were all less than 0.3. The refinement was based on F_o , the quantity minimized being $\Sigma w(F_o - F_c)^2$. The weighting scheme used was based on counter statistics as defined by Corfield, Doedens & Ibers (1967); the value of p was 0.04. The scattering factors used were those of Hanson, Herman, Lea & Skillman (1964).*

Discussion. The final atomic coordinates and thermal parameters are given in Table 1. The standard deviations for atomic positions were taken from the least-squares matrix. Bond lengths and angles including those after thermal corrections (in square brackets) and estimated standard deviations (in parentheses) are given on the thermal ellipsoid plot of the molecule in Fig. 1. The molecule is virtually planar, with a maximum deviation of 0.04 Å from the least-squares plane. Fig. 2 shows the crystal packing where stacking of the benzene rings is observed. Though chemical equivalency allows for a mirror plane through O(9) bisecting bonds C(1)-C(2) and C(5)-C(4), no such plane is used in the crystal. Unlike tetrachlorophthalic anhydride (Rudman, 1971) and the perylene complex of pyromellitic dianhydride (Boeyens & Herbstein, 1965), where large discrepancies between the pairs of C=O and C-O bonds in each molecule were reported, only small differences in bond lengths between chemically equivalent atoms in phthalic anhydride are noticeable. In this respect, phthalic anhydride is like the pyrene-pyromellitic dianhydride complex at 110K (Herbstein & Snyman, 1969).

The authors wish to thank the University of Arizona Computer Center for computer time, Dr M. Barfield for suggesting an unrelated project which led to our solving this structure and Dr S. K. Arora for helpful advice.

References

- BOEYENS, J. & HERBSTEIN, F. H. (1965). J. Phys. Chem. 69, 2160–2176.
- CORFIELD, P. W. R., DOEDENS, R. J. & IBERS, J. A. (1967). Inorg. Chem. 6, 197–204.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368–376.
- HANSON, H. P., HERMAN, F., LEA, J. D. & SKILLMAN, S. (1964). Acta Cryst. 17, 1040–1044.
- HERBSTEIN, F. H. & SNYMAN, J. A. (1969). *Phil. Trans. Roy.* Soc. 264A, 635–662.
- PANDEY, O. N. (1954). Sci. Cult. 20, 254-255.
- RUDMAN, R. (1971). Acta Cryst. B27, 262-269.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63–76.
- WILLIAMS, M. B., VAN METER, W. P. & MCCRONE, W. C. (1952). Anal. Chem. 24, 911–912.

Acta Cryst. (1977). B33, 895–897

(25R)-Cholest-5-ene-3 β , 26-diol

BY A. KIRFEL AND G. WILL

Lehrstuhl für Mineralogie und Kristallographie am Mineralogischen Institut der Universität Bonn, D-5300 Bonn, Poppelsdorfer Schloss, Germany (BRD)

AND R. BRENNECKE AND R. TSCHESCHE

Institut für Organische Chemie und Biochemie der Universität Bonn, D-5300 Bonn, Max-Planck-Strasse 1, Germany (BRD)

(Received 13 October 1976; accepted 5 November 1976)

Abstract. $C_{27}H_{46}O_2$, orthorhombic, $P2_12_12_1$, a = 19.182 (3), b = 22.062 (5), c = 11.605 (3) Å, V = 4911 (2) Å³, Z = 8, $D_v = 1.089$ g cm⁻³. The analysis establishes the configuration at C(25) as (25*R*). The crystal is built up of molecules connected by hydrogen bonds, forming infinite chains running along **a**.

Introduction. The specimen was a clear, thin needle cut to $0.1 \times 0.1 \times 0.1 \times 0.1$ mm. Systematic absences were *h*00, *h* odd; 0*k*0, *k* odd and 00*l*, *l* odd. Intensities were measured in the θ -2 θ mode on an automatic Syntex *P*2₁ four-circle diffractometer with Mo *K* α radiation ($\lambda = 0.71069$ Å) monochromatized by a graphite crystal.

^{*} A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32258 (4 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

O(1)

C(1)

C(2)

C(3)

C(4)

C(5) C(6)

C(7)

C(8)

C(9)

C(10)

C(11) C(12)

C(13)

C(14)

C(15)

C(16) C(17)

C(18)

C(19)

C(20)

C(21)

C(22) C(23)

C(24)

C(25)

C(26) C(27) O(2)

O(1')

C(1')

C(2')

C(3') C(4')

C(5') C(6')

C(7')

C(8')

C(9')

C(10')

C(11') C(12') C(13')

C(14') C(15')

C(16')

C(17')

C(18')

C(19')

C(20')

C(21')

C(22')

C(23') C(24')

C(25')

C(26') C(27')

O(2')

With a 2° plus (α_1, α_2) -dispersion scan range for positive *h,k,l* and a maximum $2\theta = 45^\circ$, 3595 unique reflexions were recorded of which 2349 were regarded as unobserved $(I < 3\sigma)$ due to the small sample size and the high overall temperature factor $(B = 3.9 \text{ Å}^2)$. No absorption correction was applied $(\mu = 0.686 \text{ cm}^{-1})$.

The structure (58 heavy atoms) was partially solved with MULTAN (Germain, Main & Woolfson, 1971). From 300 |E|'s ≥ 1.6 , 2000 Σ_2 relationships, $\mathcal{H}_{hh'} \geq$ 7.27, a fragment of one molecule containing three sixmembered rings could be recognized. The recycling procedure based on this fragment did not enlarge it. However, on insertion into MULTAN of those 23 phases with the highest α values obtained from the recycling procedure as known phases, a subsequent run clearly showed the corresponding fragment of the other molecule. At this stage 36 atoms had been found. The 22 missing atoms could be located from inspection of a difference map at R = 0.38. Refinement was by full-matrix least squares with anisotropic temperature factors. Owing to the large number of parameters (524), refinement had to take place in overlapping cycles. H atoms were ignored. The reflexions were weighted with an adjustable Cruickshank scheme, the final weights being w = 0.28 for $|F_0| \ge 50.0$ and w = $0.00012|F_o|^2$ for $|F_o| < 50.0$. An isotropic extinction factor (Zachariasen, 1963) was included (final value 6×10^{-7}). The refinement was stopped when the parameter shifts were well below the standard deviations. The final R_w was 0.073 or 0.060 with unobserved reflexions omitted.*

Discussion. For investigations on the biogenesis of spirostanole, (25R)-26-hydroxycholest-4-en-3-one was required. This compound could be synthesized from diosgenin (Brennecke, Saito, Töpfer & Tschesche, 1977). The (25S) compound was obtained earlier (Zaretskaya

* A list of structure factors and anisotropic thermal parameters has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32265 (26 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Fig. 1. Numbering scheme of atoms.

et al., 1968; Schubert, Kaufmann & Budzikiewicz, 1969) and the configuration at C(25) was established by X-ray methods (Duchamp, Chidester, Wickramasinghe, Caspi & Yagen, 1971). Since the optical

Table 1. Positional parameters $(\times 10^4)$ with standard deviations in parentheses

х	у	2
1724 (4)	6064 (3)	3212 (8)
9834 (6)	6100(6)	4233 (11)
637 (6)	6061 (6)	4345 (12)
942 (6)	6176 (7)	3141 (13)
819(6)	6861 (6)	2831 (13)
55 (7)	6951(6)	2667 (12)
9763 (7)	7215(5)	1749(12)
8993 (5)	7362 (6)	1572 (11)
8532(5)	7268 (5)	2675 (10)
8802 (5)	6656(5)	3290 (10)
9587(6)	6740(6)	3777 (11)
8305 (6)	6483 (6)	4288 (10)
7549 (6)	6373 (5)	3826 (10)
7260(6)	6937 (5)	3180 (11)
7798(5)	7102(6)	2218 (11)
7430(6)	7589 (6)	1543 (11)
6644 (6)	7378 (5)	1537 (11)
6605(7)	6858 (5)	2455 (11)
7170(6)	7489 (6)	4104 (10)
9621(6)	7241 (5)	4722 (11)
5875 (6)	6850 (5)	3081 (12)
5857(6)	6376 (6)	4107 (10)
5354 (6)	6689 (5)	2079 (11)
4570(6)	6603 (6)	2595 (11)
4141 (6)	6491 (6)	1490 (9)
3352(6)	6470 (5)	1909 (11)
2976 (6)	6221 (5)	763 (13)
3053 (7)	7081 (6)	2246 (12)
2231 (5)	6206 (4)	970 (8)
1622 (4)	5724 (4)	9060 (8)
9710(5)	5916(5)	9802(6)
522 (5)	6056 (5)	9815 (10)
869 (6)	5534 (8)	9011 (13)
643 (6)	5663 (6)	7744 (13)
9824(5)	5563 (4)	7672 (10)
9548 (5)	51/9(5)	6917(11)
8/51(6)	5043 (6)	6/86(12)
8362(6)	5582(6)	7283 (13)
8018(5)	5730(5)	8556 (9)
9400(3)	5960 (5)	0241(11)
0155 (5) 7367 (5)	6020 (5)	9241(11) 0230(12)
7159(5)	5886 (5)	7953 (11)
7600(5)	5303 (5)	7434 (10)
7000(5)	5138 (6)	6383 (11)
64 2 0 (6)	5212(5)	6712 (10)
6363 (6)	5568 (5)	7952 (14)
7118(6)	6498 (5)	7176 (11)
9476(6)	6650(4)	8078 (10)
5726(6)	5984 (5)	7937 (11)
5637(6)	6298 (5)	9140 (11)
5059 (6)	5500 (6)	7736(12)
4421(6)	5917(6)	7372 (14)
3809 (6)	5465 (6)	7111 (14)
3144(7)	5833 (8)	6589 (19)
2554 (10)	5335 (8)	6498 (16)
3320(8)	6074 (6)	5400 (13)
2429 (6)	5073 (5)	7579 (11)

activities of the two diastereomers are close to the limits of accuracy of determination (Duchamp *et al.*, 1971; Varma, Koreeda, Yagen, Nakanishi & Caspi, 1975), the (25R) form of the above compound could not be established unambiguously. Hence the configuration at C(25) had to be investigated by X-ray structure analysis. Owing to the better crystallization, the intermediate cholest-5-ene- 3β , 26-diol (Fig. 1) was used which is important for other subsequent syntheses.

Tables 1 and 2 give the final fractional atomic coordinates, bond distances, and angles of the molecules I and I'. The C-C single bonds vary from 1.50 to 1.68 Å with a mean of 1.57 (2) Å. These results are probably due to omission of the H atoms. However, C(5)-C(6), 1.34 (2), and C(5')-C(6'), 1.33 (2) Å, clearly establish them as C=C double bonds and hence confirm the chemical information.

Table 2. Interatomic distances (Å) and angles (°) for the molecules I and I' of the asymmetric unit

The standard deviations are 0.02 Å and 1.0° respectively.

I	I'		I	ľ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{matrix} I' \\ 55 & 1 \cdot 59 \\ 58 & 1 \cdot 62 \\ 54 & 1 \cdot 62 \\ 52 & 1 \cdot 50 \\ 57 & 1 \cdot 56 \\ 49 & 1 \cdot 59 \\ 64 & 1 \cdot 59 \\ 64 & 1 \cdot 33 \\ 53 & 1 \cdot 56 \\ 57 & 1 \cdot 52 \\ 57 & 1 \cdot 52 \\ 51 & 1 \cdot 59 \\ 55 & 1 \cdot 53 \\ 55 & 1 \cdot 53 \\ 55 & 1 \cdot 59 \\ 55 & 1 \cdot 53 \\ 55 & 1 \cdot 59 \\ 55 & 1 $	C(12)-C(13) C(13)-C(14) C(13)-C(17) C(14)-C(15) C(15)-C(16) C(16)-C(17) C(20)-C(21) C(20)-C(21) C(22)-C(23) C(23)-C(24) C(24)-C(25) C(25)-C(25) C(25)-C(25)-C(25) C(25)-C(25)-C(25) C(25)-C(25)-C(25) C(25)-C(25)-C(25)-C(25) C(25)-C(25	I 1 · 55 1 · 56 1 · 63 1 · 52 1 · 50 1 · 58 1 · 57 - 1 · 58 1 · 57 1 · 58 1 · 57 1 · 63 1 · 54 1 · 59 - 59	l' 1.57 1.50 1.63 1.68 1.51 1.62 1.54 1.53 1.57 1.68 1.59 1.57 1.63
C(9) - C(10) = 1 + 0	52 1.61	C(25)-C(27)	1.52	1.52
C(10) = C(19) 1. C(11) = C(12) 1.	56 1·56	C(25) = C(20) C(26) = O(2)	1.45	1.40
. , . ,	1 1'			I I'
$\begin{array}{c} C(2)-C(1)-C(10)\\ C(1)-C(2)-C(3)\\ O(1)-C(3)-C(4)\\ O(1)-C(3)-C(2)\\ C(2)-C(3)-C(4)\\ C(3)-C(4)-C(5)\\ C(4)-C(5)-C(10)\\ C(4)-C(5)-C(10)\\ C(4)-C(5)-C(6)\\ C(6)-C(5)-C(10)\\ C(5)-C(6)-C(7)\\ C(6)-C(7)-C(8)\\ C(7)-C(8)-C(9)\\ C(7)-C(8)-C(14)\\ C(9)-C(8)-C(14)\\ C(8)-C(9)-C(11)\\ C(8)-C(9)-C(11)\\ C(10)-C(5)-C(11)\\ C(1)-C(10)-C(5)\\ \end{array}$	1 1' 112 110 107 105 108 105 107 100 108 107 108 107 108 107 114 113 125 121 127 125 114 107 107 111 105 107 104 104 111 109 110 110	C(14)-C(13)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1	17) 1 18) 1 14) 1 18) 1 17) 1 18) 1 17) 1 18) 1 15) 1 15) 1 16) 1 17) 1 160) 1 120) 1 220) 1 221) 1 222) 1 233) 1	I I' 00 100 11 105 07 112 08 112 18 112 18 112 11 114 13 109 04 103 05 102 19 118 11 114 03 109 04 103 05 102 19 118 11 114 03 103 103 103 103 103 12 114 13 109 10 105
C(1)-C(10)-C(9)	107 106	C(22)-C(23)-C(23)	24) 1	02 105
C(1) = C(10) = C(19) C(5) = C(10) = C(9)	106 108	C(23) = C(24) = C(24)	23) I 27) I	14 110
C(5)-C(10)-C(19)	109 108	C(24)-C(25)-C(25)	26) 1	01 104
C(9)-C(10)-C(19)	111 114	C(26)-C(25)-C(25)	27) 1	10 110
C(9) = C(11) = C(12) C(11) = C(12) = C(13)) 112 108	U(25) - U(26) - U(26)	2) I	08 110

Fig. 2. Stereoscopic view of the two molecules of the asymmetric unit.

Fig. 3. Stereoscopic view of the unit cell along c.

The C-O single bonds vary from 1.40 to 1.52 Å with a mean of 1.47 (2) Å, close to the expected value. An *ORTEP* drawing (Johnson, 1965) of the two molecules of the asymmetric unit is shown in Fig. 2. The molecules are tilted against each other at about 90°. The shortest distances between adjacent molecules are $O(1) \cdots O(2^{i})$, 3.08(1), and $O(2) \cdots O(1^{ii})$, 2.72(1) Å. These distances correspond to hydrogen bonds. Thus the structure can be described as consisting of infinite chains of molecules I and I' running along **a**. A stereoscopic view of the arrangement of the molecules in the unit cell, approximately along [001], is shown in Fig. 3.

After completion of the refinement a final difference map showed no traces of the (25S) form. Hence the configuration of the title compound could be established unambiguously as (25R).

RB gratefully acknowledges the receipt of a fellowship provided by the Friedrich-Ebert-Stiftung.

References

- BRENNECKE, R., SAITO, Y., TÖPFER, A. & TSCHESCHE, R. (1977). In preparation.
- DUCHAMP, D. J., CHIDESTER, C. G., WICKRAMASINGHE, J. A. F., CASPI, E. & YAGEN, B. (1971). J. Amer. Chem. Soc. 93, 6283-6284.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta. Cryst. A27, 368–376.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794.
- SCHUBERT, K., KAUFMANN, G. & BUDZIKIEWICZ, H. (1969). Biochim. Biophys. Acta, 176, 170–177.
- VARMA, R. K., KOREEDA, M., YAGEN, B., NAKANISHI, K. & CASPI, E. (1975). J. Org. Chem. 40, 3680–3686.
- ZACHARIASEN, W. H. (1963). Acta Cryst. 16, 1139–1144.
- ZARETSKAYA, I. I., KOGAN, L. M., TIKHOMIROVA, O. B., SIS, J. D., WULFSON, N. S., ZARETSKII, V. I., ZAIKIN, V. G., SKRYABIN, G. K. & TORGOV, I. V. (1968). *Tetrahedron Lett.* 24, 1595–1600.